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First-passage times in complex scale-invariant media
S. Condamin1, O. Bénichou1, V. Tejedor1, R. Voituriez1 & J. Klafter2

How long does it take a random walker to reach a given target
point? This quantity, known as a first-passage time (FPT), has
led to a growing number of theoretical investigations over the
past decade1. The importance of FPTs originates from the crucial
role played by first encounter properties in various real situ-
ations, including transport in disordered media2,3, neuron firing
dynamics4, spreading of diseases5 or target search processes6–9.
Most methods of determining FPT properties in confining
domains have been limited to effectively one-dimensional geomet-
ries, or to higher spatial dimensions only in homogeneous media1.
Here we develop a general theory that allows accurate evaluation
of the mean FPT in complex media. Our analytical approach pro-
vides a universal scaling dependence of the mean FPT on both the
volume of the confining domain and the source–target distance.
The analysis is applicable to a broad range of stochastic processes
characterized by length-scale-invariant properties. Our theore-
tical predictions are confirmed by numerical simulations for
several representative models of disordered media10, fractals3,
anomalous diffusion11 and scale-free networks12.

Transport properties are often characterized by the exit time from
a sphere texit, which is the first time a random walker reaches any
point at a distance r from its starting point. This quantity is well
known for brownian motion in euclidean spaces, and has also been
evaluated for finitely ramified deterministic fractals13,14. In these
cases, the length-scale-invariant properties of the walker’s trajectories
have a key role and lead to the scaling form texit / rdw , which defines
the walk dimension3 dw. Interestingly, it has been shown that a large
class of complex scale-free networks are also invariant under the
length scale renormalization scheme defined in ref. 15, even if they
are of ‘small world’ type—that is, if their diameter scales like the
logarithm of the volume. This remarkable property led the authors
of ref. 12 in particular to characterize the mean exit time in this class
of small-world networks by a set of scaling exponents.

However, in many situations, the determining quantity is not texit, but
rather the FPT of a random walk starting from a source point S to a given
target point T. Indeed the FPT is a key quantity to quantify the kinetics
of transport-limited reactions14,16, which encompass not only chemical
or biochemical reactions17,18, but also (at larger scales) interactions
involving more complex organisms, such as a virus infecting a cell19

or animals searching for food6. The relevance of the FPT has also been
recently highlighted in ref. 12 in the context of scale-free networks, such
as social networks20, protein interaction networks21 or metabolic net-
works22. The FPT and the exit time in fact possess very different pro-
perties. Indeed, the exit time is not sensitive to the confinement, as only a
sphere of radius r is explored by the random walker. On the contrary, an
estimation of the time needed to go from one point to another, namely
the FPT, crucially depends on the confining environment—the mean
FPT (MFPT) being actually infinite in unbounded domains.

Consider a random walker moving in a bounded domain of size N.
Let W(r, t jr9) be the propagator (that is, the probability density of
being at site r at time t, starting from site r9 at time 0), and P(r, t jr9)

the probability density that the FPT to reach r, starting from r9, is t.
These two probability densities are known to be related through23

W (rT,t jrS)~

ðt

0

P(rT,t 0jrS)W (rT,t{t 0jrT)dt 0 ð1Þ

where rS and rT denote, respectively, the source and target position.
After integration over t, this equation gives an exact expression for
the MFPT, provided it is finite:

Th i~ H(rTjrT){H(rTjrS)

Wstat(rT)
ð2Þ

where

H(rjr0)~
ð?

0

W (r,t jr0){Wstat(r)ð Þdt ð3Þ

and Wstat is the stationary probability distribution (see Supplemen-
tary Information for details). Equation (2) is an extension of an
analogous form given in ref. 24, for which no quantitative determina-
tion of the MFPT could be proposed. The main problem at this stage
is to determine the unknown function H, which is indeed a compli-
cated task, as it depends both on the walk’s characteristics and on the
shape of the domain. A crucial step that allows us to go further in the
general case is that H turns out to be the pseudo-Green function of
the domain25, which in turn is well suited to a quantitative analysis.
Indeed, we propose approximating H by its infinite-space limit,
which is precisely the usual Green function G0:

H(rjr0)<G0(rjr0)~
ð?

0

W0(r,t jr0)dt ð4Þ

where W0 is the infinite space propagator (Supplementary Infor-
mation). Note that a similar approximation has proven to be satisfactory
in the standard example of regular diffusion26. We stress that when
inserted in equation (2), this form does not lead to a severe infinite space
approximation of the MFPT, because all the dependence on the domain
geometry is now contained in the factor 1/Wstat. This approximation is
the key step of our derivation and, as we proceed to show, captures
extremely well the confining effects on MFPTs in complex media.

We first consider the case of a uniform stationary distribution
Wstat 5 1/N, which is realized as soon as the links of the network
are not directed and the number of connected neighbours of a node,
the degree, is constant. This assumption amounts to symmetrical
transition rates and actually underlies many models of transport in
complex media, with the notable exception of scale-free networks,
which will be tackled later on in this Letter. Following ref. 3, we
assume for W0 the standard scaling:

W0(r,t jr0)!t{df =dw P
jr{r0j
t1=dw

� �
ð5Þ
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where the fractal dimension df characterizes the number of sites

Nr / rdf within a sphere of radius r, P is the infinite space scaling
function, and dw has been defined previously. This form ensures
the normalization of W0 by integration over the whole fractal set. A
derivation given in Supplementary Information then yields our cent-
ral result:

Th i*
N (A{Brdw{df ) for dwvdf

N (AzB ln r) for dw~df

N (AzBrdw{df ) for dwwdf

8><
>: ð6Þ

for r 5 jrT 2 rSj different from 0; here ‘,’ indicates large N asymp-
totic equivalence. Strikingly, the constants A and B do not depend on
the confining domain. In addition, whereas A is related to the small-
scale properties of the walk, we emphasize that B can be written solely
in terms of P (a precise definition of A and B is given in
Supplementary Information). These expressions therefore unveil a
universal scaling dependence of the MFPT on the geometrical para-
meters N and r.

Several comments are in order. First, we point out that equation
(6) gives the large N asymptotics of the MFPT, which is a function
of N and r as independent variables. In particular, the volume
dependence is linear in N for r fixed in any case, which can not be
inferred from the standard scaling Th i!Ldw , L being the charac-
teristic length of the domain of order N 1=df . Second, a global rescaling
of the problem r R lr, L R lL, when applied to equation (6), gives
the standard form Th i!ldw for dw . df and Th i!ldf for dw , df in
accord with refs 27 and 28. Third, equation (6) shows two regimes,
which rely on infinite space properties of the walk: in the case of
compact exploration3 (dw $ df) where each site is eventually visited,
the MFPT behaves like Th i!Nrdw{df ( Th i!N ln r for dw 5 df) at
large distances, so that the dependence on the starting point always
matters; in the opposite case of non-compact exploration, Th i tends
to a finite value for large r, and the dependence on the starting point is
lost.

We now confirm these analytical results by Monte Carlo simu-
lations and exact enumeration methods applied to various models
that exemplify the three previous cases. (1) The random barrier model
in two dimensions3 is a widespread model of transport in disordered
systems in which MFPT properties remain widely unexplored. It is
defined by a lattice random walk with nearest neighbours symmetrical
transition rates C distributed according to some distribution r(C).
Even for a power law distribution r(C) the scaling function P(j) can
be shown to be gaussian10 (df 5 dw 5 2), which allows us to explicitly
compute the constant B and obtain Th i*N (Az(1=2pDeff ) ln r).
Here Deff is a diffusion constant depending on r(C) that can be deter-
mined by an effective medium approximation10 (Supplementary

Information). (2) The Sierpinski gasket of finite order is a represent-
ative example of deterministic fractals, described in Fig. 1. In this case3

df 5 ln 3/ln 2 , ln 5/ln 2 5 dw, so that our theory predicts the scaling
Th i!Nr( ln 5{ ln 3)= ln 2. (3) The Lévy flight model of anomalous dif-

fusion11,23 is based on a fat-tailed distribution of jump lengths
p(l)!l{d{b (0 , b # 2). The walk dimension is now dw 5 b, whereas
the fractal dimension is the dimension of the euclidian space d . In
dimensions d $ 2, or for d 5 1 when b , 1, one has df . dw and our
theory gives Th i*N (A{Brb{d).

Figure 2a–c reveals excellent quantitative agreement between the
analytical predictions and the numerical simulations. Both the
volume dependence and the source–target distance dependence are
unambiguously captured by our theoretical expressions, equation
(6), as shown by the data collapse of the numerical simulations.
We emphasize that the very different nature of these examples
demonstrates that the range of applicability of our approach, which
mainly relies on the length-scale-invariant property of the infinite
space propagator (equation (5)), is wide.

These analytical results can be extended to scale-free networks. The
latter are characterized by a power-law degree distribution. A wide
class of scale-free networks has been proven recently to be invariant
under a length-scale renormalization scheme defined in ref. 15: social
networks20, the world wide web29, metabolic networks22, and yeast
protein interaction networks (PIN)21. Although the standard fractal
dimension df of these networks is infinite as their diameter scales as
lnN, one can show that they are scale-invariant in the following sense:
they can be covered with NB non-overlapping boxes of size lB with
NB=N!l{dB

B . This renormalization property defines an alternative
scaling exponent called the box dimension dB, which is actually equal
to the fractal dimension defined earlier as long as the networks are
not of small-world type. A model of scale-free networks possessing
such length-scale-invariant properties has been defined recursively in
refs 12 and 30: the network grows by adding m new offspring nodes to
each existing network node, resulting in well defined modules. In
addition, modules are connected to each other through x random
links (Supplementary Information). In this case dB 5 ln(2m 1 x)/ln3
and dw 5 ln(6m/x 1 3)/ln3.

For this class of networks, Wstat(r) is not uniform any more but
proportional to the degree k(r) of the node r. One can use the length-
scale-invariant property to infer the following scaling of the infinite
space propagator:

W0(r,t jr0)
k(r)

!t{dB=dw P
jr{r0j
t1=dw

� �
ð7Þ

This form, compatible with the symmetry relations proposed in ref.
24, allows us to perform a similar derivation, which leads for the
MFPT to the same result (equation (6)), but where df is to be replaced

S

T

a b

8
2

32

Degree

Figure 1 | Length-scale-invariant networks. a, The Sierpinski gasket (here
of order three) is a representative example of a deterministic fractal. A
sample random path from S to T is shown. b, The yeast PIN, obtained from

the filtered yeast interactome developed in ref. 21. Picture generated by
LaNet-vi software (http://xavier.informatics.indiana.edu/lanet-vi/).
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by dB. We applied this formula to an example of a scale-free biological
network, the yeast PIN (Fig. 1b), obtained from the filtered yeast
interactome developed in ref. 21, and to a model12,30 of a scale-free
fractal network. Figure 2d shows that this analytical result is in good
agreement with numerical simulations on the PIN network. The data
collapse over various system sizes for the model of scale-free fractal
networks provides a further validation of our approach, and indicates
that our theory has a wide range of applications.
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Figure 2 | Mean FPT in complex media. a, Random barrier model with a
transition rate distribution r(C) 5 (a/C)(C/C0)a, with C0 5 1 and a 5 0.5.
The confining domain is an L 3 L square with the target point in the middle.
Shown are numerical simulations of the MFPT rescaled by the volume N,
averaged over the disorder, for three different domain sizes. The theoretical
curve (black line) is given by Th i=N*(Az(1=2pDeff ) ln r), where the only
fitting parameter is A; Deff is evaluated in Supplementary Information.
b, Numerical simulations of random walks on a Sierpinski gasket (log/log
plot) for three different system sizes (orders 6, 7 and 8). For each set of
points, the size of the Sierpinski gasket and the target point are fixed (the
target point corresponds to the point T on the Sierpinski gasket of order 3 in
Fig. 1a, and the starting point takes various positions on the Sierpinski
gasket). The black line corresponds to the theoretical scaling rdw{df .
c, Simulations of Lévy flights on a two-dimensional square lattice (b 5 1).
The confining domains are 50 3 50, 100 3 100 and 200 3 200 squares, with

the target in the middle. The MFPT is presented as a function of the
source–target distance for different source points. Simulation points are
fitted with Th i=N*(A{Brb{2): d, Simulations of random walks on fractal
complex networks of small-world type. The MFPT on the PIN network (blue
circles) is fitted by Th i=N*(AzBrdw{dB ) with dw < 2.86 and dB < 2.2, as
found in ref. 12. We also consider three examples of the model of networks
defined in ref. 12: (m 5 3, x 5 1, dB 2 dw 5 1), red symbols and fitting curve;
(m 5 3, x 5 2, dB 2 dw 5 ln(3/2)/ln3), violet symbols and fitting curve; and
(m 5 3, x 5 3, dB 2 dw 5 0), green symbols and fitting curve. For each
example, the MFPT (rescaled by the network volume N~(1zx)k for three
system sizes k 5 3, 4, 5) averaged over the disorder is presented as a function
of the source–target distance for different source points, and fitted by the
theoretical expression Th i=N*(AzBr ln (3=x)= ln 3). We find quite
surprisingly a scaling independent of m.
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