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I. DERIVATION OF EQUATION (2) OF THE MAIN TEXT

We start from the following equation for the propagator W and the FPT density P :

W (rT , t|rS) =

∫ t

0

P (rT , t′|rS)W (rT , t− t′|rT )dt′ (1)

Integrating this equation, and inverting the integrals, we get:

∫ T

0

W (rT , t|rS)dt =

∫ T

0

dt′P (rT , t′|rS)

∫ T

t′
dtW (rT , t′ − t|rT ) (2)

We now define

H(r|r′) =

∫

∞

0

(W (r, t|r′)−Wstat(r))dt, (3)

where Wstat is the stationary probability distribution. The integrals (2) can then be evaluated as a function of H and

Wstat, up to a correction µ(T ):

H(rT |rS) + TWstat(rT ) =

∫ T

0

P (rT , t′|rS)[H(rT |rT ) + (T − t′)Wstat(rT )]dt′ + µ(T ), (4)

where

µ(T ) =

∫ T

0

dt′P (rT , t′|rS)

[

∫ T−t′

0

dt(W (rT , t|rT )−Wstat(rT ))−H(rT |rT )

]

. (5)

We now show that limT→∞ µ(T ) = 0. Let ε be any fixed number. There exists T large enough such that:

|

[

∫ T/2

0

dt(W (rT , t|rT )−Wstat(rT ))

]

−H(rT |rT )| ≤
ε

2
(6)

and

∫ T

T/2

dt′P (rT , t′|rS) ≤
ε

2
[

|H(rT |rT )|+
∫

∞

0
dt|W (rT , t|rT )−Wstat(rT )|

] . (7)

Then one has

|µ(T )| ≤ |

∫ T/2

0

dt′P (rT , t′|rS)

[

∫ T−t′

0

dt(W (rT , t|rT )−Wstat(rT ))−H(rT |rT )

]

|+

+ |

∫ T

T/2

dt′P (rT , t′|rS)

[

∫ T−t′

0

dt(W (rT , t|rT )−Wstat(rT ))−H(rT |rT )

]

| (8)
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In the first integral of (8), T − t′ ≥ T/2, so that

|

∫ T/2

0

dt′P (rT , t′|rS)

[

∫ T−t′

0

dt(W (rT , t|rT )−Wstat(rT ))−H(rT |rT )

]

| ≤
ε

2

∫ T/2

0

dt′P (rT , t′|rS) ≤
ε

2
, (9)

and in the second integral

|

∫ T

T/2

dt′P (rT , t′|rS)

[

∫ T−t′

0

dt(W (rT , t|rT )−Wstat(rT ))−H(rT |rT )

]

|

≤

∫ T

T/2

dt′P (rT , t′|rS)

[

|H(rT |rT )|+

∫

∞

0

dt|W (rT , t|rT )−Wstat(rT )|

]

] ≤
ε

2
. (10)

Finally, µ(T ) ≤ ε, which proves that limT→∞ µ(T ) = 0.

Next remark that T−
∫ T

0
TP (rT , t′|rS)dt′ goes to 0 when T goes to infinity, since it is lower than

∫

∞

T t′P (rT , t′|rS)dt′,

and the mean first-passage time is finite. We can thus write from the T →∞ limit of equation 4:

〈T〉 =
H(rT |rT )−H(rT |rS)

Wstat(rT )
. (11)

II. PSEUDO-GREEN FUNCTIONS

In this paragraph, we show that the function H(r|r′) ≡
∫

∞

0
(W (r, t|r′) −Wstat(r))dt defined above is the pseudo-

Green function of the problem, namely that it satisfies

−∆rH(r|r′) = −Wstat(r) + δr,r′ , (12)

where ∆r is the Laplace operator of the walk defined by ∆rf(r) =
∑

r′′ [wrr′′f(r′′) − wr′′rf(r)], and wr′r stands for

the transition probability from site r to site r
′. A complete introduction to pseudo-Green and Green functions can be

found in ref.(1). We use in this paper only the definition given by equation 12, and its connection with the infinite

space Green function discussed in the next paragraph.

We start with the equations satisfied by the propagator W in confined space with reflecting boundary conditions :

d

dt
W (r, t|r′) = ∆rW (r, t|r′), (13)

and by the stationary probability distribution Wstat:

0 = ∆rWstat(r). (14)

Integrating the difference between these two equations over t between 0 and ∞ leads straightforwardly to equation

12, which shows that H is the so-called pseudo-Green function of the problem.
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III. GREEN FUNCTIONS

A key step in our derivation is that the pseudo-Green function defined above can be approximated by the infinite

space Green function G0, which by definition1 satisfies

−∆rG0(r|r
′) = δr,r′ , (15)

Taking the N → ∞ limit of equation 12 gives equation 15, which shows that our approximation is valid in the large

system size limit. We denote by W0 the infinite space propagator, which also satisfies equation 13. We next give

useful integral representations of G0 which depend on the relative order of df and dw.

A. Case of non compact exploration : dw < df

We write in this case

G0(r|r
′) ≡

∫

∞

0

W0(r, t|r
′)dt. (16)

Integrating over t between 0 and ∞ equation 13 written for W0 leads to equation 15. G0 is therefore the Green

function of the problem.

B. Case of compact exploration : dw ≥ df

In this situation, we must treat separately the case of symmetric transition probabilities wrr′ = wr′r, and the non

symmetric case.

1. Symmetric transition probabilities

The integral 16 defining G0 above is not finite for dw ≥ df . However, we can use the following generalized definition

depending on an unimportant reference point r2:

G0(r|r
′)−G0(r2|r

′) ≡

∫

∞

0

(W0(r, t|r
′)−W0(r2, t|r

′))dt, (17)

which is shown as previously to satisfy equation 15. Equation 17 therefore defines the Green function of the problem

in this case.
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2. General case

It is necessary to introduce an auxiliary function I , defined by:

I(r1|r
′)− I(r2|r

′) ≡

∫

∞

0

(

W0(r1|r
′)

X(r1)
−

W0(r2|r
′)

X(r2)

)

dt, (18)

where the “weights” X(r) are proportional to the stationary probability when the domain is confined and satisfy

∑

r′

wrr′X(r′) =
∑

r′

wr′rX(r). (19)

For example, we can take X(r) = 1 for symmetrical transition probabilities, and X(r) = k(r) for small-world networks

defined in the main text (k(r) being the degree of the node r). We now define

G0(r|r
′) ≡ X(r)I(r|r′). (20)

Note that this expression defines G0 up to a constant times the weight function. The following calculation shows that

G0 satisfies equation 15 and is therefore the Green function of the problem :

−∆rG(r|r′) =
∑

r′′

[wrr′′G0(r
′′|r′)− wr′′rG0(r|r

′)]

= −
∑

r′′

wrr′′X(r′′)[I(r′′|r′)− I(r|r′)] (21)

= −
∑

r′′

wrr′′X(r′′)

∫

∞

0

[

W0(r
′′|r′)

X(r′′)
−

W0(r|r
′)

X(r)

]

dt, (22)

= −

∫

∞

0

[

∑

r′′

wrr′′W0(r
′′, t|r′)−

∑

r′′

wr′′rW0(r, t|r
′)

]

dt (23)

= −

∫

∞

0

d

dt
W0(r, t|r

′)dt (24)

= δr,r′ (25)

where Eq.(19) was used to get the lines (21) and (23).

IV. DERIVATION OF EQUATION (6) OF THE MAIN TEXT

We consider the case of a stationary distribution Wstat = 1/N . The pseudo Green function H is approximated by

the infinite space Green function G0 defined in the previous section. We now assume for r 6= r
′ the standard scaling

for W0:

W0(r, t|r
′) ∼ t−df /dwΠ

(

|r− r
′|

t1/dw

)

, (26)
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where the scaling function Π behaves smoothly for low ξ (long times), Π(ξ) ∼ C0 − ξβ , and decays fast enough for

high ξ (large distances). This assumption is very dimly restrictive since for most fractal models, including loopless

fractals, critical percolation clusters and Sierpinski gaskets2, the propagator is expected to behave like a stretched

exponential, which would satisfy both hypotheses.

In the following, W0(|r− r
′|, t) stands for W0(r, t|r

′). The computation of the MFPT depends on the relative order

of df and dw.

A. If df > dw

One has

H(rT |rT )−H(rT |rS) ≈ G0(0)−G0(r) (27)

with

G0(r) ≈ rdw−df

∫

∞

0

Π(u−1/dw)

udf/dw
du, (28)

which leads to

〈T〉 ∼ N(A−Brdw−df ). (29)

Here A depends on the small scale properties of the walk:

A =

∫

∞

0

W0(0, t)dt (30)

and B reads:

B =

∫

∞

0

Π(u−1/dw)

udf /dw
du. (31)

B. If df = dw

In this case only differences of Green functions are well defined, and we have to introduce an extra reference point

R which will be unimportant in the final results.

H(rT |rT )−H(rT |rS) ≈

∫

∞

0

(W0(0, t)−W0(r, t))dt =

∫

∞

0

(W0(0, t))−W0(R, t))dt +

∫

∞

0

(W0(R, t)−W0(r, t))dt

(32)
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The second difference in equation 32 reads:

G0(R)−G0(r) ≈ lim
T→∞

[

∫ T

0

Π

(

R

t1/dw

)

dt−

∫ T

0

Π
( r

t1/dw

)

dt

]

= lim
T→∞

∫ T/Rdw

T/rdw

Π(u−1/dw)

u
du

= −C0dw(ln(R)− ln(r)). (33)

Given that the scaling relation 26 is accurate for large R, we take the limit R →∞ and obtain the scaling relation:

〈T〉 ∼ N(A + B ln r). (34)

with

A = lim
R→∞

[
∫

∞

0

(W0(0, t))−W0(R, t))dt−B ln R

]

and B = C0dw. (35)

C. If df < dw

We write Π(ξ) = C0 − Π∗(ξ). Then, introducing as previously the reference point R, the second difference in

equation 32 reads:

G0(R)−G0(r) = −

∫ T/Rdw

0

Rdw−df

udf /dw
Π∗(u−1/dw)du +

∫ T/rdw

0

rdw−df

udf /dw
Π∗(u−1/dw)du

= −Rdw−df

∫

∞

0

du

udf/dw
Π∗(u−1/dw) + rdw−df

∫

∞

0

du

udf/dw
Π∗(u−1/dw), (36)

Taking again the reference point R to infinity, we obtain the sought scaling relation, provided that df/dw +β/dw > 1 :

〈T〉 ∼ N(A + Brdw−df ), (37)

where

A = lim
R→∞

[
∫

∞

0

(W0(0, t))−W0(R, t))dt−BRdw−df

]

and B =

∫

∞

0

du

udf /dw
Π∗(u−1/dw). (38)

Note that if df/dw + β/dw ≤ 1 the MFPT is infinite.

V. EFFECTIVE MEDIUM APPROXIMATION OF THE RANDOM BARRIER MODEL

We consider a distribution of transition rates

ρ(Γ) = (α/Γ)(Γ/Γ0)
α (39)
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if Γ < Γ0, and 0 otherwise. If we consider that the transition rates correspond to jumps above an energy barrier, this

model corresponds to exponentially distributed energy barriers3. The scaling function Π(ξ) for the random energy

barriers model in dimension 2 is simply a Gaussian:

Π(ξ) =
exp(−ξ2/(4Deff))

4πDeff

. (40)

The diffusion coefficient Deff can be computed numerically3 by solving the equation:

∫

∞

0

ρ(Γ)
Deff − Γ

(z − 2)Deff + 2Γ
dΓ = 0, (41)

where z is the coordination number, 4 for a square lattice.

The constant B is then given by equation 35, and we have:

〈T〉 ∼ N

(

A +
1

2πDeff

ln r

)

. (42)

VI. CONSTRUCTION OF FRACTAL SCALE FREE NETWORKS

A model of scale free networks bearing length scale invariant properties described in the main text has been defined

recursively in ref. (4,5): the network grows by adding m new offspring nodes to each existing network node, resulting

in well defined modules. In addition, modules are connected to each other through x random links (see figure (1)).

Figure (2) gives a graphic representation of such a network.

FIG. 1: A scale invariant scale free network defined in ref. (5), here with 2 generations of m = 3 offsprings each and x = 1.
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FIG. 2: A scale invariant scale free network defined in ref. (5), here with 4 generations of m = 3 offsprings each. The node

diameter is proportional to the degree. Picture generated by the LaNet-vi software (http://xavier.informatics.indiana.edu/lanet-

vi/)
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