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We present a novel computational method of first-passage times between a starting site and a target site
of regular bounded lattices. We derive accurate expressions for all the moments of this first-passage time,
validated by numerical simulations. Their range of validity is discussed. We also consider the case of a
starting site and two targets. In addition, we present the extension to continuous Brownian motion. These
results are of great relevance to any system involving diffusion in confined media.
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FIG. 1. Modifications of the original lattice: Arrows denote
one-way links.
How long does it take for a drunkard to go from a given
bar to another one? This time is known in the random walk
literature as a first-passage time (FPT), and it has generated
a considerable amount of work for many years [1,2]. The
importance of FPT relies on the fact that many physical
properties, including fluorescence quenching [3], neuron
dynamics [4] or resonant activation [5] to name a few, are
controlled by first-passage events. Unfortunately, explicit
determinations of FPT are most of the time limited to very
artificial geometries, such as 1D and spherically symmetric
problems [2].

The determination of FPT for random walks in realistic
geometries is not just a theoretical challenge in its own
right. It is actually a very general issue involved as soon as
molecules diffuse in confined media as, for example, bio-
molecules diffusing in the cell and undergoing a series of
transformations at precise regions of the cell. An estima-
tion of the time needed to go from one point to another is
then an essential step in the understanding of the kinetics of
the whole process.

Very recently, two important advances in the calculation
of FPT have been performed. First, in the case of discrete
random walks, an expression for the mean first-passage
time (MFPT) between two nodes of a general network has
been found [6]. So far, however, no quantitative estimation
of the MFPT has been derived from this formula. Second,
the leading behavior of MFPT of a continuous Brownian
motion at a small absorbing window of a general reflecting
bounded domain has been obtained [7,8]. In the case when
this window is a small sphere within the domain, the
behavior of MFPT has recently been derived [9]. This
result is rigorous but does not give access to the depen-
dence of the MFPT with the starting site.

In this Letter, we present a new computational method
that allows us to quantitatively extend all these results in
three directions: (i) We obtain an accurate explicit formula
for the MFPT, (ii) we also examine all the moments of the
FPT, and (iii) we consider the case with two targets. The
method is presented in detail in the case of discrete random
walks on regular lattices, and then the extension to con-
tinuous Brownian motion is outlined.
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We first consider a random walker on a bounded lattice,
and we address the question of determining the mean time
needed to reach one point of the lattice (target site T) from
another one (starting site S). The boundaries are assumed
to be reflecting. The starting point of the method is a result
known in the mathematical literature as Kac’s formula
[10]. Indeed, after our previous work about first return
times (FRTs) for random walks [11], we found out that
Kac’s formula allows one to extend our results to general
finite graphs. Kac’s result concerns irreductible graphs
(i.e., from any point one can go to any other point), which
admit a stationary probability ��r� to be at site r. Let us
consider random walks starting from a random point of a
subset � of sites of the lattice, with a probability propor-
tional to the stationary probability. Then the mean FRT of
the random walk, i.e., the mean number of steps needed to
return to any point of �, is, according to Kac’s formula,
1=����, where ���� �

P
r2���r�.

This formula gives FRTs and not FPTs. However, we can
use it to derive the MFPT hTi by slightly modifying the
original lattice (see Fig. 1): We suppress all the original
links starting from the target site T and add a new one-way
link from T to the starting point S. In this modified lattice,
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FIG. 2 (color online). 3D—Influence of the distance between
the source and the target. Simulations (red crosses) vs theory
(plain line). The domain is a cube of side 31, the target being in
the middle of it. The source takes all the positions in a cube of
side 15 centered on the target.
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the FRT to T is just the FPT from S to T in the former
lattice, plus one. In what follows, for the sake of simplicity,
we consider only regular 2D or 3D lattices, although the
argument may be easily extended to any kind of graph. Let
rT be the position of the target site and rS be the position of
the starting site. Denoting ��rT� � j, Kac’s formula gives
hTi � 1=j� 1. Thus, all we need to know is the stationary
probability for the modified graph. It satisfies the following
equation:

��r� �
1

�

X
hr0;ri

��r0� � j�rrS �
X
hr0;rT i

j
�
�rr0 ; (1)

where hr; r0imeans that these two sites are neighbors and�
is the number of nearest neighbors of a site (by convention,
the sites on the boundaries are their own neighbors). The
last two terms of the right-hand side of (1) are due to the
modifications of the lattice. To solve this equation, we
define the auxiliary function �0, equal to � for r � rT ,
with �0�rT� � 0. It satisfies:

�0�r� �
1

�

X
hr0;ri

�0�r0� � j�rrS � j�rrT ; (2)

so that �0 has the following expression:

�0�r� �
1� j
N
� jH�rjrS� � jH�rjrT�; (3)

where N is the total number of sites, and H is the discrete
pseudo-Green function [12], which is symmetrical in its
arguments and satisfies:

H�rjr0� �
1

�

X
hr00;ri

H�r00jr0� � �rr0 �
1

N
: (4)

Indeed, the solution (3) satisfies Eq. (2) and ensures that �
is a probability function (of sum unity). The condition
�0�rT� � 0 allows us to compute j and to deduce the
following exact expression:

hTi � N�H�rT jrT� �H�rT jrS��: (5)

This formula is equivalent to the one found in Ref. [6] but
is expressed in terms of pseudo-Green functions. One
advantage of our method is that it may be easily extended
to more complex situations, as we will show. Another
advantage is that, although the pseudo-Green function H
is not known in general, it is well suited to approximations.
The simplest one is to approximate the pseudo-Green
function by its infinite-space limit, the ‘‘usual’’ Green
function: H�rjr0� ’ G�r� r0�, which satisfies:

G�r� �
1

�

X
hr0;ri

G�r0� � �0r: (6)

The value of G�0� and the asymptotic behavior of G are
well-known [13]. For instance, for the 3D cubic lattice, we
have G�0� � 1:516 386 and G�r� ’ 3=�2�r� for r large.
For the 2D square lattice, we have G�0� �G�r� ’
2=� ln�r� � 3=� ln2� 2�=�, where � is the Euler gamma
constant. These estimations of G are used for all the
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practical applications in the following. This infinite-space
approximation may be improved by two kinds of correc-
tions. First, the constant term 1=N in Eq. (4) may be taken
into account:

H�rjr0� ’ G�r� r0� �
1

N
�r� r0�2: (7)

In the 3D case, this ‘‘uniform correction’’ is always weak:
Its order of magnitude is at mostN�1=3. However, in the 2D
case, it is negligible only if N ln�rS � rT� � �rS � rT�2.

A second correction that may be taken into account is
the influence of nearby boundaries. For flat boundaries, it
can be computed explicitly. Denoting by s�r� the symmet-
ric point of site r with respect to the closest flat boundary,
H becomes

H�rjr0� ’ G�r� r0� �G�r� s�r0��: (8)

If the boundary is not flat, this expression gives only the
order of magnitude of the expected correction. These two
alternative corrections correspond to two different ways to
treat the effect of boundaries: (7) is a mean-field type
correction, whereas (8) is a local correction. One should
use either (7) or (8) mainly according to the position of the
target. A rule of thumb, used in the following, is that as
soon as one of the two corrections is negligible, the other
one leads to good results. Indeed, the correction (7) is
useful for a target far from any boundary, whereas the
correction (8) is more appropriate if the target is close to
a flat boundary. As for the limitations of these approxima-
tions, they are not to be used in two cases: (i) if neither (7)
nor (8) are negligible; (ii) if the target is close to an
irregular boundary.

We have compared the theoretical predictions with nu-
merical simulations. We first checked (Fig. 2) the behavior
of the MFPT when the source-target distance varies (the
FPT is averaged over 100 000 random walks). We also
studied the influence of the distance between the target
and a boundary (Fig. 3), using the correction (8). Finally,
we checked that our approximation was also correct for the
1-2
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FIG. 3 (color online). 3D—Influence of the distance between
the target and a flat boundary. Simulations (red crosses) vs theory
(plain line). The domain is a cube of side 41 whose center is at
�0; 0; 0�; the source is at �0; 0; x� 15�, and the target is at
�0; 0; x� 20�.
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2D case (Fig. 4). Since in this case the uniform correction
(7) is not negligible, we took it into account.

In all the cases studied, the numerical simulations vali-
date our approximations. Thus, our method provides an
efficient way for estimating the MFPT, which up to now
was known only formally and for a few specific cases.

Furthermore, it is possible to compute the higher-order
moments of the FPT, using an extension of Kac’s formula,
which gives a relation between the Laplace transform of
the FRT to a subset �, averaged on �, and the Laplace
transform of the FPT to this same subset, averaged on the
complementary subset ��.

�����he�sTi� � e
�s� � �1� ������e�s � 1�he�sTi ��:

Both averages are weighted by the stationary probability�.
For any starting point M different from T, the behavior of
the random walk from M to T is exactly the same on the
original and modified lattices until it reaches T. Thus, the
FPT from M to T is the same on both lattices. This remark
allows one, by applying the above formula to the modified
lattice and using the correspondance between the FRT to T
and the FPT from S, to get a relation between the nth
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FIG. 4 (color online). 2D—Influence of the distance between
the source and the target. Simulations (red crosses) vs theory:
blue dotted line, without the uniform correction; black plain line
(in the middle of the set of points), with this correction. The
domain is a square of side 61, the target being in the middle of it,
and the source takes all possible positions.
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moment of the FPT and the lower-order moments of the
FPT:

hTnir �
1

j�r�

Xn
m�1

X
r0�rT

��1�m�1 n
m

� �
�r�r0�hTn�mir0 :

We denote by�r the stationary distribution of the modified
graph whose starting point is r. The lowercase r refers to
the starting point of the walk. This allows one, by recur-
rence, to get an estimation of the nth order moment, for
large enough domains, but in the 3D case only [in fact,
H�rjr0� has to be negligible when r0 is far from r] After
some calculations which will be detailed in a further
publication [14], it can be shown that

hTni � n!Nn��H0 �H�rSjrT���H0 � �H�n�1 �O�N�2=3��;

(9)

where H0 � H�rTjrT� and �H � 1=N
P

rH�rjr
0�. Note that

�H is independent of r0 due to the symmetry property of H
and that �H scales as N�1=3, since G�r� 	 1=r. A good
estimation of �H, to be used for practical applications, is
its value for a spherical domain, computed in the continu-
ous limit, �H � �18=5��3=�4���2=3N�1=3. The estimations
(9) are confirmed by numerical simulations (Fig. 5).

It should be pointed out that the moments (9) are close
but not equal (see Fig. 5) to the moments of an exponential
distribution of the FPT. However, if the particle starts
randomly inside the volume, the moments are the same
as those of the exponential distribution, with a correction
proportional to N�2=3. This property sheds a new light on
the quasichemical approximation [8], which assumes that,
if a particle starts randomly in the volume, it has a constant
exit probability at each time step, which leads to an ex-
ponential distribution.

We now turn to the situation where the lattice contains
several targets, relevant in many chemical applications [3].
For the sake of simplicity, the calculation is driven in the
case of two targets but may be easily extended to more
absorbing points. We compute here the eventual hitting
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FIG. 5 (color online). 3D—Higher-order moments: Theory
(black curve) vs simulation (red crosses). The blue dotted curve
is the moments of the exponential distribution whose average
time is the MFPT. The nth moment is normalized by Nn; the
domain is a cube of side 51 centered on the target at �0; 0; 0� and
the source at �2; 2; 1�.
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FIG. 6 (color online). 2D—Two-target simulations.
Simulations (red crosses) vs theory (plain line). One target is
fixed at ��5; 0�; the source is fixed at �5; 0�; the other target is at
�x; 3�. The domain is a square of side 201; the middle is the point
�0; 0�.
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probability to a specified target Pi, the so-called ‘‘splitting
probability’’ [2], as well as the mean time until the particle
hits either of the two targets hTi. We modify the graph in
the same way as in Fig. 1: For both absorbing points,
denoted by r1 and r2, the bonds relating them to their
neighbors become one-way bonds, and a link is added
from each target to the starting point rS. We denote
��r1� � j1, ��r2� � j2, and j � j1 � j2. Again, the rela-
tion hTi � 1=j� 1 provides the mean absorption time, and
the probabilities to hit r1 or r2 are, respectively, j1=j and
j2=j. We obtain a relation analogous to (3):

�0�r� �
1� j
N
� jH�rjrS� � j1H�rjr1� � j2H�rjr2�;

(10)

then, writing �0�r1� � �0�r2� � 0,8<
:

1�j
N � �j1 � j2�H1s � j1H01 � j2H12 � 0

1�j
N � �j1 � j2�H2s � j2H02 � j1H12 � 0;

(11)

where H12 � H�r1jr2� and, for i � 1 or 2, His � H�rijrS�,
H0i � H�rijri�. These equations yield exact expressions
for the mean absorption time and the splitting probabilities,
respectively:

8>>><
>>>:

hTi � N �H01�H1s��H02�H2s���H12�H2s��H12�H1s�
H01�H02�2H12

P1 �
H1s�H02�H2s�H12

H01�H02�2H12

P2 �
H2s�H01�H1s�H12

H01�H02�2H12
:

Again, these expressions give excellent results when com-
pared to simulations (Fig. 6).

We finally address the case of a continuous Brownian
motion. The target T is now a sphere of radius a centered
on rT , and the Brownian particle has a diffusion coefficient
D. It still starts from the point rS, at a distance R from the
center of the target. The results are quite similar to those
obtained in the discrete case, and the details of the compu-
tation will be published in a future paper [14]. The esti-
mated MFPT within the infinite-space approximation are
26060
hT3Di �
V

4�D

�
1

a
�

1

R

�
; hT2Di �

A
2�D

ln
R
a
; (12)

where V and A are the volume and area of the domains. If
the target is approximately centered, the uniform correc-
tion gives a contribution to hTi of �R2=�6D� in 3D and
�R2=�4D� in 2D. The correction due to a flat reflecting
boundary is the following:8<

:
hT3Di �

V
4�D �

1
a�

1
2d�

1
R�

1
R0�

hT2Di �
A

2�D �ln
R
a � lnR

0

2d�;
(13)

with d the distance between the center of the sphere T and
the boundary, and R0 the distance between this same center
and the reflexion of the starting point by the boundary.
Note that these results significantly extend the (exact)
formula of Pinsky [9], which gives only the leading term
in a.

In summary, we have presented here a new method of
computation that yields very accurate expressions of mean
first-passage times for discrete random walks and continu-
ous Brownian motion. These approximations have proven
to be especially useful when the target is roughly in the
middle of the bounded domain or near to a flat boundary.
This approach also gives access to more complex quanti-
ties such as higher-order moments. These results may be of
the greatest interest for systems involving diffusion in
confined media.
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